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DYNAMIC RESPONSE OF A CYLINDRICAL SHELL SEGMENT
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Closed form expressions are obtained for the displacement, in the radial,
circumferential and axial directions respectively, for a cylindrical shell

éegment subtended by an arbitrary angle 60 and subjected to an arbitrary
load-distribution. Iaplace and finite Fourler sine and cosine transforms
are employed to accomplish the solution. A numerical example, utilizing an

idealized eguivalent triangular blast load, is included to provide a com-
parison with available experimental data as found in the literature. Further-
more, the effect of the magnitude of the thickness to radius of curvature

ratio (%), and of the negligence of the inertial terms in the axial and

circumferential directions, on the frequencies, are investigated.
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TNTRCDUCTION

Experimental data, concerning the response of buried arches or tubes to
blast wave loading is available to some extent; however, adequate theories
and theoretical solutions upon which the design of such structures may be
based are lacking in the literature. The present solution is to provide
a step in this direction.

The investigation is restricted to the dynamic response of a simply
supported cylindrical sheli segment subjected to an arbitrary loading. The
basic system of equations is taken directly from [5] and modified only by the
inclusion of the inertia terms and forcing functions. The equations then are
non-dimensionalized with respect to the length of the arch, L, the subtended
angle BO and the decay time of the applied blast load, in order to simplify
the necessary calculations. This system of linear partial differential
equations is reduced to a linear algebraic system in the transformed displace-
ment functions, by eliminating the time dependence by means of the laplace-
transformation and the spatial dependence by means of double, finite Fourier
sine and cosine transforms. A simple application of Cramer's rule, and the
inversion of the transformed displacement functions results in the final, closed-
form sclutions,

A numerical example, the dynamic response of a semicircular cylindrical
shell, is included to provide a qualitative comparison to experimentally
obtained data [1]. The comparison here was possible only so far as the order
of magnitude is concerned, since the arch tested in [1] was stiffened con-
siderably by the surrounding soil so that it was to be expected that the
measured deflections resulting from the dynamic load would be less than those

obtained by truncating the theoretical series solutions obtained in this paper.

The times at which the peak deflections occurred_a e favorably.




The effect on the natural frequencies of the system, of the omission of
the inertial terms in the axial and circumferential directions for varying
values of the ratio % is found to be negligible (of the order of 1%) for the

higher frequencies, up to a certain limiting value, beyond which the inertial

terms must be included.
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Notation:

(c)(s)

(es)(ec)(ss)

(]

Sngols:

Bar above a letter denotes the laplace transform of a function
with respect to the non-dimensional time variable T

Superscripts (s) and (c) denote finite Fourier sine and cosine
transforms respectively.

Superscripts (cs), (cc) and (ss) denote successive finite Fourier
transforms.

Denote references in the bibliography.

Equivalent decay time.

Modulus of elasticity

Thickness of shell.

Length of shell.

Moment.

Normal or shear force.

Surface loading components in the directions indicated by the
subscripts.

Radius of the cylindrical shell segment.
laplacian parameter.

Time variable.

Displacements in the x,y,z-directions (Figure 1).
Poisson's ratio.

Density.



Equations of Motion

The static equations of general cylindrical shell theory may be found in
[5]. These equations are modified by the inclusion of the inertial forces

and arbitrary forcing functions. They thence have the form:

a2u + 1+v azv _Voow + 1y QE% o (1-v2) (p. - ph QEE)

aXE 2R 0x36 R ox SRS 38 Eh u at2

1+v 8211 1-v Bgv + aEV _ ow = - (l-\)2) (p _ ph ﬁ (l)
2R 0x396 2 5 2 R2892 R239 Eh v atE

V ou , 1 ov. _ W _ @QMW + 2 .._.____.ahw + 1 B4W> = ———-—-——R(l—\)2) (p. -ph ﬁ)
3x Ro6 R 12 —;H 22 3x02 ;E ggﬂ Eh W 342

where the loading components P, Pys and p, are functions of x, 6, and t.
The problem is completely formulated, when the following boundary and
initial conditions are included:

a) initial conditions:

w(x,6,0) = u(x,8,0) = v(x,8,0) = 0;

wt(x,e,o) = ut(x,S,O) = vt(x,S,O) = 0;
b) boundary conditions:

i) imposed on 6

u(x,0,t) = u(x,eo,t) = 0;
va(x,0,t) = vg(x,8 ,t) =0;
8 e o (2)
w(x,0,t) = w(x,eo,t) = 03
Wee(xyoyt) = Wee(x,eo:t) = 0;
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ii) imposed on x

uX(O,e,t) = uX(L,G,t) = 0;
v(0,8,t) = +(L,6,t) = O;
W(O,B,t) = w(L,e,t) = 0;
WXX(O,B,t) = wxx(L’e’t) = 0,

where the subscript notation has been used to denote partial differentiation.

It is convenient to non-dimensionalize equations (1), and (2), by intro-

ducing the following non-dimensional ratios:

X, =9 . s _% y.
gzi:cp*eo:T_d:U—

where 4 is the eqguivalent decay time of the shock-load.

This characteristic

constant is used since the prime concern here is blast and impulsive loading.

The substitution of these non-dimensional variables in equation (1) and the

subsequent laplace transformation of these equations, in conjunction with the

initial conditions results in

}
o
+
o
|
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a§2 1 3Edp 2 dp 3acp2 L v 5
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where

s oL 1tv b = L(1+v) e - L . = R(1-v7)
1 8 ==X 1 Reoh-v) 1 VRE_ 6 hv
o - ML - S o - Ba-v?)pr
2 R 2 Reeo(l_v) 27 MR 7 -
- 12(1-v) - 12 . n°R
il = g0 -
3 R eg 3 Rgei(l-v) 3 a3y
N L(l-vg) b = 2L(1+v) o = i
e h L h L 6RLV92
(o]
(1-\)2\ L2 2(1+\))L2 hoL
5 Ed 5 Ed > 12VR GO

and where it is assumed that the p's are laplace-transformable.

The linear system (3) of partial differential equations is now trans-
formed to a linear system of algebraic equations by the application of finite
Fourier sine and cosine transforms [4](see also appendix), with the boundary

conditions (2), i.e.

(2, + 59 % (mn,8) 4 4 75 m,m,0) + 4 75 (mn,0) = 4 (mym,0)

11 13

(ss)

+ sg)v(sc)(m,n,s) +A_ W (m,n,s) = Qz(m,n,s)

A ﬁ(cs)(m,n,s) + (A 23

21 22

A ﬁ(cs)(m,n,s)_+ A

5(sc) + + s° qlss) m,n,s) = Q.(m,n,s
2 3oV (@n,s) + (g + 8T (myn,8) = Q5(mym,s).

(%)



Here, the superscripts indicate the type of transformation and the order in
which they were carried out. Furthermore, the arguments (m,n,s) of the
transformed functions are order-preserving with respect to the arguments

(E,9,7) of the original functions. The coefficients Aij in equation (4) are

given by
2 2
+
. - o a35n L alamﬁn- . a2 . i_ -*(cs).
- a > Mo ¢ 7 M3 2N T g ¥ ’
11 5 i 3 8 5 4
@ B b o + b _B° bB b
A - m_l A . n, A __2mn, Q - _%*_ I'S*(SC). (5)
21~ b, ’ ez b 27237 b T Y2 T b ’
5 5 3P 5V
o c_B +c.a +c 0262 + c B)‘L c
A =B 1™n, , s 3 m 4 % n 5°n . g = 6 5*(55)
l - 2 2 - 3 i 2 - c W 2
3 cq 3 c7 33 c7 3 7

where aﬁ = mm and Bn = ™m are the transform parameters for § and ¢ respectively.
An investigation of these coefficients Aij reveals that they are symmetric,

which was to be expected from the symmetry of the original equations. This

symmetry becomes quite useful if one observes that the 52's may be interpreted

as the eigenvalues of a real, symmetric matrix, obtained from equation (L),

and as such must be real [2]. With this in mind, Cramer's rule may be applied

to equation (4) and the solutions written in the form:

3
ﬁ(cs)(m,n,s) = E: Qj Klj(m,n,s)
J=1
3
V(sc)(m,n,s) = z: Qj sz(m,n,s\ (6)
=1
3
ﬁ(SS)(m,n,s) = Ej éj K3j(m,n,s)
J=1
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where the Qj‘s are the loading functions as defined in (5) and where

ﬁl (m,n,s) = —= + ;J 5 + ;j 5
s +w._ S +(D2 S ""(1)3
with
2 2 2
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and

A(wg) = (wl2 - w22)(w12 - w32)(w22 - w32)

as obtained by some algebraic manipulation and by means of a partial fractions
separation.
The w,'s are obtained by setting 32 = —hi in the determinant of the co-

efficient matrix of equations{4), and then solving the cubic equation

3

2
AT+ BAT + B+ B =0 (9)

obtained by expansion of the determinant. Here, © 8, and 6, are given by

1 % 3
8, = (A ¥ 5th40)
6 = (A11A22+A11A33+A22A33‘A122'A132‘A232)
®; = (A11A22A33+2A12A13A23'A122A33'A132A22'A232A11)

From Descartes’ rule for the roots of a polynominal it is known that (9) can
have only negative roots as long as 61, 62, 93 > 0. Since this must be the
case, if the solution is to remain stable, it is justifiable to write the
solution in the form (6).

The inversion of equations (6) with respect to the Laplace transformation

is now accomplished through the application of the convolution integral

defined by

T

L"l{f(s\g(s)} = Flr)*a(7) = S F(r-t)a{t)at

e}



The result is

(cs) >
cs :
0 mn,m) =) (@ (mn, 0% mm,-0ag
j=1lo0
3 T
V(SC)(man: T) :Z S Q’J (M,H,Q)ng (m,n,'r—{;)dg (10)
Jj=1 o
(ss) >
TTss{mhﬂ'\——Y ( m.n -
TS =) Qj(—;~v£)K3J(m:n:T g)dg
j=1o
where
L )
Ql(mansg) = kp (m,n,{)
_ . ¥(cs)
&, (m,n,0) = kp' %) (m,n, )
Qy(mn, ©) = ko 5% (m,n, )
3 2 )g - PW 233
since
R - G
a. b, ¢, pnL "
>
Also,
“17=
L {Kij(m,n,s)} = Kij(m,n,T)
Ci' Di' Ei'
= Eai Sin.uiT + E;l sin w,T + E;i sin w3T’

L_l { } denoting the inverse Laplace transform.
The final step in obtaining the solution of the system of equations (1)
is the inversion of the Fourier sine and cosine transforms. These operations

are carried out with the use of the inverse transforms as defined in the
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appendix. The inversion may be separated into two parts:

a) inversion w.r.t. ¢

o 3
- T
U(C>(m,qa,'r) = 22 {z g Qj(m,n,Q)Klj(m,n,'r-g)dl;}sin B.®
n=1 j=1 o
() - s T
v (m,p, 1) = V(‘S )(m O,1) + 22 {Z g Qa(m,n,g)sz(m,n,-r-g)ng$cqu ©
n=1 Jj=1o
W (m,0,1) = 22 {Z (', (mn, O (mom,r-Oagetn B9 (11)
=1 j=1l o

b) inversion w.r.t. §

w @ 3
ueem) =00 s u) ) {) ST @, (mym, 60K, (m,m,7-C)c}
m=1 n=1 j=1 o

sin Bncp cos Otm§

V(E,p,7) = 22 {V(SC) (m,0,7) + 22 {z S Q (m,n, C,)K (m n T—g)dg}cosﬁ cp}
n=1 Jj=1 o0
sin o € (12)
® o | 3 .

W(E,p,T1) = LLZ Z {Z SQJ.(m,n,C)KBJ.(m,n,T-C)d;}sin B sin cvm§

m=]1 n=1 j=1 o

Equations (12) represent the solution of the dynamic equations of a cylindrical
shell segment subjected to an arbitrary loading, arbitrary to the extent,

naturally, that the loading function be Fourier transformable.

1k




The expressions for the stresses and moments in terms of the displacements

are given by (5]

_apduLy v
Nex = N dx R (ae - W)
- N[ L8v dun.
Ngo = MR35 - W) + v 51
N o= 2wl . o) 188, 9V
Xe 2 \ V/LR e aX’”
5 (13)
- 9w, v (v , 9w
Mxx"D[aX2+R2 (ae+aez)]’
2 2
1,0V W W
Mgg = -0 [ 555+ =) + v =1
©0 R 0 392 Bx2
2
- 1 r0v_ 9w
Mo =P -V Rl * 500
Eh Eh3
where N = 5 and D = ——————. Note that equations (13) are in terms of the
1-v 12(1-v7)

dimensional variables.
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Compariscon with Experimental Data

Unfortunately, no experimental data are available which correspond exactly
to simple support conditions. Of the considered experimental data, that which
most closely approximates the case of simply supported edges is obtained from
[1], where a buried arch subjected to short and long duration blast-loading is
considered. In order to keep the numerical calculations as simple as possible,
this type of loading is simulated by an equivalent (equivalent in the sense

of the same total impulse) triangular pulse load of the form
t
p, =P, (1-3),

where Po represents the peak overpressure, and d is the equivalent decay time.

Transformation and substitution in equation (12) results in

2
upod N m n m+n
W(E,p,7) = —> Z [1-(-1)"(-2)"(-1)™"1.
helm =1 Bel
C D B 1
{—Q% [l—T-coswlTﬁjLSinwlT] + _§% [l—T-cosw2¢+5£sinw27] + —§% [l-T—cosw37+a—sinw3T]}
w 1 w, 2 g 3
sin am§ sin de. (14)
This expression, with the particular values:
3 1b sec2
h = .0478 in, L = 57.6 in, p = 1.356k4 x 10 1 >
in
. 6 _ .
p, = 7.5 psi, d = 76 msec, E = 30 x 10~ psi, 90 =

is used to obtain the deflections in non-dimensional form.
The experimental and theoretical data can be compared only in order of
magnitude due to the discrepancies mentioned above. In the numerical

evaluation of equation (12), care must be exercised in truncating the resultant
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series, since convergence is slow. The difficulty arises for fixed m, with n

increasing, since the radial frequency, w

1 initially decreases, and thereafter

monotonically increases for some n depending on m. The

TABLE 1

Numerical Comparison with Experimental Data

Experimental Theoretical
. (=1, cyd
® (-3) mes .105 132
Peak Crown
Deflection in inches 172 .535
Max. Response
at Crown in msec 15 36

interval, in which wy decreases, becomes smaller with a decrease in 60, i.e.
approaching the shallow shell range, and with an increase in %. From Figure 2
it is apparent that, in view of the large difference in frequencies the omission
of the inertial terms for u and v has little effect for the lower modes.

Figure 3 indicates that there is a peak deflection at 13 msec. This, however,
is a relative maximum; the maximum occurs at 36 msec as indicated in Table 1.
The difference in the numerical values of the deflections is explained in

[1] as the result of a difference in soil density, i.e. small reductions in

so0il density resulted in a large percentage increase in the deflection. The
frequency in Table 1, corresponding to the first inextensional symmetrical
mode, was measured with no endwalls in the arch. BSince simple supports were
assumed in the numerical example, an increase in the frequency is to be expected.
The absence, in the theoretical response curve (Figure 3), of the damping
exhibited for the experimental deflection curve is to be attributed to the

rough approximation given by the triangular load.
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Effect of the Omission of the Inertial Terms
in the Axial and Circumferential Directions.

The investigation of the omission of the inertial terms is restricted to
the effect on the radial frequency. The effect on the deflection is not con-
sidered. The frequencies, as obtained here, are compared to those calculated

from the expression [4]

* 1 7N ) 2 \2 m .
o = ——= |5 (" +p° ) —2
1 hpR2LR2 m n zJ (15)

where
3
N = Eh Sy = mnR | b = Tt
= — = — = =,
12(1_\)2) m L n eo

Equation (15) is based on shallow shell theory, omitting the inertial terms in
the u and v -directions. For the higher frequencies there is virtually no
error‘introduced by using (15), even out of shallow shell range. However, the
error in the fundamental frequency (m=1l, n=1) increases as 8, increases, and
becomes 41% for Go=n. The frequencies increase with increasing % up to
% = E%’ which was taken to be the upper bound for thin shell theory [3].
Again, the error introduced by using (15) instead of (9) to obtain the fre-
quencies is negligible.

Tt must be emphasized that the range of applicability of equation (15)
is limited to a certain frequency range. As was discovered by E. Reissner [6]
for spherical shells, there also exist limiting values of the frequencies of
a cylindrical shell segment, beyond which, the inertial terms must be included.
It was not yet possible to determine an indicative parameter. The range of
applicability of (15) decreases as % increases and as 90 decreases., As can be
seen from Table 2, equation (15) is useless for % = E%
for % = % when n > 31, m = 1. (The latter values do not appear in the table).

18
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Conclusions

The response of a cylindrical shell segment, subtended by an arbitrary

angle 60 and subjected to an arbitrary loading, is obtained, based on thin

shell theory.

Inertlial terms a mainly the frequency corresponding to the first
inextensional mode in the radial direction. (n = 1, m increasing).

The introduced error increases with decreasing R

To obtain the frequencies corresponding to the higher longitudinal modes
(n > 15 for % = é% and m = 1) the inertial terms must be included.

Comparisons with experimental data are favorable as far as order of

magnitude is concerned.
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APPENDIX
The Fourier sine and cosine transforms are given by [4]:
a) Single transforms:

a
Sine transform: f(s)(n) = S f(¢)sianmd¢.
0

)
Cosine transform: f(c)(n) = S f(w)cosﬁnwdw.

o
Single inverse transforms:
Inverse sine transform: f(g) = —-E; (s)(n)Sian¢-
. 2
Inverse cosine transform: f(g) = o) + n)cospB P

b) Simple double transforms:

(ss) b
Double sine transform: f (m,n) = S _S f(§,¢)sinam§sin5n@d¢d§.

o O

b .a
Double cosine transform: f(cc)(m,n) = S g f(g,m)cosahgcosﬁnwdmdg.

o O

Inverse simple double transforms:

X m
Inverse double sine transform: f(E,p) = E?- }E ZL (ss)(m n)51na EsinB .

m::

Inverse double cosine transform:

£(E,p) = % f(cc)(o,o) + 2—25 £(¢¢) (5, n)cosB Pt —2 {f(cc)(m,o +22 () ()

a n=1

cosqhg}cosenw.

21



c) Mixed double transforms:

Sine-cosine transform: f(sc ) (m,n)

b a
S Sf(g,(p)sinamgcosﬁncpd(pdg
(o] o]

b _a
Cosine-sine transform: f(cs)(m,n) S Sf(g,cp)cosamgsinﬁn(pdcpdg

o O

Inverse mixed double transforms:

@ @
o .
Inverse sine-cosine transform: f£(E,p) = %z {f(sc)(m,o) +2) f(sc)(m,n)
& m=1 n=1
cosP cp) sing €
n? "
Inverse cosine-sine transform: f(§,p) = —2—2—2 f(cs)(o,n)sinsncp
& np=1
i N . (cs) .
+ —é-Z Z f (m,n)mnﬁncp cosa &
m=1 n=1
mT nm
n _ o _om
where ozm ) and Bn =

Note that, in general
sc cs
£05¢) () 4 £(°%) (m,n)

It is clear that when these transform methods are applied the relevant
assumptions cdncerning the functions to be transformed are made, namely that
they satisfy Dirichlet's conditions in their respective intervals, and that the

iterated integrals may be taken successively, i.e.

b
f<s)(m,cp) = 3 f(§,cp)sinozm§d§

o
and

f(sc)(m,n) = S f(s)(m,cp)cosﬁncpd(p.

22
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List of errata

1. page 1 - 3rd to last line, "Graduate Research Assistant™ instead of
"Graduate Student’

2. page 12 - Immeditely following the definitions of 91, 92 and 03
Descartes' instead of Descarte's

3. page 12 - Two lines below 2;) - justifiable instead of justifyable

"4. page 12 - Last equation on the page; the variable of integration should
be

C instead of t

5. page 13 - Last equation on the page:

C instead of T

6. page 15 - Last sentence
"are stated in terms of" 1instead of
"are in terms of"

7. page 16 - Last paragraph, first sentence should be,. . . .discrepancies
mentioned above, and the fact that the calculated values for the
deflections are out of the small deflection range. In the .

8. page 17 - In table 1,
®  instead of

eycl instead of cyd
m sec —
m sec

9. page 18 - The denominator of the second term of equation (15) should be
2 2 2 . 2 2
(A m Hy n Y instead of (A m ¥ by )
10. page 20 - Rewrite p. 20, as follows:

Conclusions

The response of a éylindribal shell segment, subtended by an arbitrary
angle 8, and subjected to an arbitrary loading, is obtained, based on thin
shell theory.

In summary:

A. Comparison of the exact frequencies with those obtained from shallow shell
theory.

1. Ipertial terms affect mainly the radial frequency corresponding to the
first circumferential mode (n = 1; m increasing).

2. The error in the frequencies introduced by neglecting inertial terms,
is virtually unaffected by changes in % for a given §,,
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3. The error in the frequencies introduced by neglecting inertial terms,
increases for increasing 6,. It is noteworthy that only the modes
corresponding ton = 1, 2, 3 are affected; for the higher modes the
frequencies obtained by means of the shallow shell theory differ only
slightly from the exact frequencies. Hence expression (15) may be used
to calculate frequencies for shell segments out of shallow shell range.

4, To obtain the frequencies corresponding to the higher circumferential -

modes (e.g. n = 15 for hol angnm-= 1) the inertial terms must be
included. R 20

B. Comparison of the theoretical results with experimental data.

1. Times, at which peak deflections occur, subsequent to loading, agree
well with those obtained experimentally. ‘

2. Maximum deflections compare favorably with experimental values, as far
as order of magnitude is concerned. The discrepancies may be ascribed to
the stiffening effect of the sand-loading of the arch, and to the fact
that the calculated theoretical values are somewhat out of the small
deflection range, (small in comparison to the thickness).

3. The theoretical and experimental frequencies, corresponding to the first
inextensional symmetrical mode, were in good agreement. Unfortunately
no further experimentally obtained frequencies were available.
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